
5G Toolbox™
Getting Started Guide

R2020a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

5G Toolbox™ Getting Started Guide
© COPYRIGHT 2018–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2018 Online only New for Version 1.0 (Release 2018b)
March 2019 Online only Revised for Version 1.1 (Release 2019a)
September 2019 Online only Revised for Version 1.2 (Release 2019b)
March 2020 Online only Revised for Version 2.0 (Release 2020a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Getting Started with 5G Toolbox Software
1

About 5G
2

What Is 5G New Radio? . 2-2
Scope of 5G Toolbox . 2-2

5G Toolbox and the 5G NR Protocol Layers . 2-4
Downlink Channel Mapping . 2-5
Uplink Channel Mapping . 2-6

Tutorials
3

5G NR Downlink Carrier Waveform Generation . 3-2

5G NR Uplink Carrier Waveform Generation . 3-14

Synchronization Signal Blocks and Bursts . 3-28

Modeling Downlink Control Information . 3-39

5G New Radio Polar Coding . 3-41

LDPC Processing for DL-SCH and UL-SCH . 3-49

iii

Contents

Getting Started with 5G Toolbox
Software

1

About 5G

2

What Is 5G New Radio?
New Radio (NR) is the air interface supporting the next generation of mobile communication,
commonly referred to as fifth generation or 5G.

The predecessors of 5G NR are GSM, UMTS, and LTE, also referred to as second generation (2G),
third generation (3G), and fourth generation (4G) technologies, respectively. GSM primarily enabled
voice calls. The redesigned interfaces of UMTS and LTE enabled and gradually improved mobile
broadband connectivity with high data rates and high efficiency.

5G NR continues on the path of LTE by enabling much higher data rates and much higher efficiency
for mobile broadband. However, as a response to the demands of networked society, the scope of 5G
NR goes beyond mobile broadband connectivity. The main requirement of 5G NR is to enable wireless
connectivity everywhere, at any time to anyone and anything.

The wide range of use cases that drive 5G NR are classified by three main scenarios.

• Enhanced mobile broadband (eMBB) — This scenario is still the most important usage scenario
that addresses human-centric communications. eMBB use cases have various challenges. For
example, hot spots require higher data rates, higher user density, and a need for high capacity.
Wide area coverage stresses mobility and seamless user experience with lower requirements on
data rate and user density.

• Massive machine type communications (mMTC) — This scenario addresses pure machine-centric
use cases characterized by a large number of connected devices. Typically, the data rate
requirement of mMTC applications is low. However, the use cases demand a high connection
density locally, low cost, and long battery life.

• Ultra reliable and low latency communications (URLLC) — This scenario covers both human-
centric communication and critical machine-type communication (C-MTC) that demand low
latency, reliability, and high availability. Typical URLLC use cases include 3-D gaming, self driving
cars, mission-critical applications, remote medical surgery, and wireless control of industrial
equipment.

This classification is based on presently foreseen use cases and identifies key capabilities of 5G NR.
Based on these capabilities, the 5G NR interface is designed to easily adapt to unforeseen use cases
that will evolve and emerge over time.

Scope of 5G Toolbox
The 5G NR specification is developed by the Third Generation Partnership Project (3GPP). The first
release of the standard was frozen in mid-2018 as 3GPP 5G NR Release 15.

5G Toolbox provides implementations for a subset of the 5G NR physical layer specification and
channel model specifications. The following diagram highlights the scope of 5G Toolbox in terms of
the addressed specifications and their connectivity.

2 About 5G

2-2

References
[1] Dalman, E., S. Parkvall, and J. Sköld. 4G, LTE-Advanced Pro and The Road to 5G. Kidlington,

Oxford: Academic Press, 2016.

See Also

More About
• “5G Toolbox and the 5G NR Protocol Layers” on page 2-4
• “What Is LTE?” (LTE Toolbox)

External Websites
• https://www.3gpp.org

 What Is 5G New Radio?

2-3

https://www.3gpp.org

5G Toolbox and the 5G NR Protocol Layers
The 5G NR radio access network is comprised of these protocol entities:

• Service data adaptation protocol (SDAP)
• Packet data convergence protocol (PDCP)
• Radio link control (RLC)
• Medium access control (MAC)
• Physical layer (PHY)

The SDAP protocol is new in 5G NR compared to the LTE protocol stack. SDAP handles the new QoS
framework of the 5G System (in the 5G Core). SDAP applies also to LTE when connected to the 5G
Core. The introduction of SDAP enables end-to-end QoS framework that works in both directions.

To meet the desired key capabilities of 5G NR, the other layers of the stack provide various
enhancements over their LTE counterparts. The PDCP, RLC, and MAC protocols handle tasks such as
header compression, ciphering, segmentation and concatenation, and multiplexing and
demultiplexing. PHY handles coding and decoding, modulation and demodulation, and antenna
mapping.

This figure shows the 5G NR user plane protocol stack for user equipment (UE) and the NR radio
access network node (gNB). 5G Toolbox supports the 5G NR physical layer, including physical
channels and signals. The toolbox also supports interfacing with portions of the RLC and MAC layers,
including transport channels and logical channels.

2 About 5G

2-4

Downlink Channel Mapping
5G NR system downlink data follows the mapping between logical channels, transport channels, and
physical channels, as indicated in the diagram. 5G Toolbox provides the red-highlighted downlink
functionality for physical channels, transport channels, and control information.

 5G Toolbox and the 5G NR Protocol Layers

2-5

For more details, see “Downlink Channels” or the specific downlink channel:

• “Downlink Physical Signals”
• “Downlink Physical Channels”
• “Downlink Transport Channels”
• “Downlink Control Information”

Uplink Channel Mapping
5G NR system uplink data follows the mapping between logical channels, transport channels, and
physical channels, as indicated in the diagram. 5G Toolbox provides the red-highlighted uplink
functionality for physical channels, transport channels, and control information.

2 About 5G

2-6

For more details, see “Uplink Channels” or the specific uplink channel:

• “Uplink Physical Signals”
• “Uplink Physical Channels”
• “Uplink Transport Channels”
• “Uplink Control Information”

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network.

[2] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network.

[3] 3GPP TS 38.300. “NR; NR and NG-RAN Overall Description.” 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network.

See Also

More About
• “What Is 5G New Radio?” on page 2-2

 5G Toolbox and the 5G NR Protocol Layers

2-7

External Websites
• https://www.3gpp.org

2 About 5G

2-8

https://www.3gpp.org

Tutorials

3

5G NR Downlink Carrier Waveform Generation
This example implements a 5G NR downlink carrier waveform generator using 5G Toolbox™.

Introduction

This example shows how to parameterize and generate a 5G New Radio (NR) downlink waveform.
The following channels and signals can be generated:

• PDSCH and its associated DM-RS and PT-RS
• PDCCH and its associated DM-RS
• PBCH and its associated DM-RS
• PSS and SSS
• CSI-RS

This example supports the parameterization and generation of multiple SCS specific carriers and
multiple bandwidth parts (BWP). Multiple instances of the PDSCH and PDCCH channels can be
generated over the different BWPs. Sets of CORESETs and search space monitoring opportunities can
be configured for mapping the PDCCHs. Note that no precoding is applied to the physical channels
and signals in this example.

Waveform and Carrier Configuration

This section sets the SCS specific carrier bandwidths in resource blocks, the cell ID, and the length of
the generated waveform in subframes. You can visualize the generated resource grids by setting the
DisplayGrids field to 1. The channel bandwidth and frequency range parameters are used to
display the associated minimum guardbands on a schematic diagram of the SCS carrier alignment.

waveconfig = [];
waveconfig.NCellID = 0; % Cell identity
waveconfig.ChannelBandwidth = 40; % Channel bandwidth (MHz)
waveconfig.FrequencyRange = 'FR1'; % 'FR1' or 'FR2'
waveconfig.NumSubframes = 10; % Number of 1ms subframes in generated waveform (1,2,4,8 slots per 1ms subframe, depending on SCS)
waveconfig.DisplayGrids = 1; % Display the resource grids after signal generation

% Define a set of SCS specific carriers, using the maximum sizes for a
% 40 MHz NR channel. See TS 38.101-1 for more information on defined
% bandwidths and guardband requirements
carriers(1).SubcarrierSpacing = 15;
carriers(1).NRB = 216;
carriers(1).RBStart = 0;

carriers(2).SubcarrierSpacing = 30;
carriers(2).NRB = 106;
carriers(2).RBStart = 1;

SS Burst

In this section you can set the parameters for the SS burst. The numerology of the SS burst can be
different from other parts of the waveform. This is specified via the block pattern parameter as
specified in TS 38.213 Section 4.1. A bitmap is used to specify which blocks are transmitted in a 5ms
half-frame burst. The periodicity in milliseconds and the power of the burst can also be set here.
Other SS burst parameters not shown here can also be set. For the full list see the help for
hSSBurst.

3 Tutorials

3-2

% SS burst configuration
ssburst = [];
ssburst.Enable = 1; % Enable SS Burst
ssburst.BlockPattern = 'Case B'; % Case B (30kHz) subcarrier spacing
ssburst.SSBTransmitted = [1 1 1 1]; % Bitmap indicating blocks transmitted in a 5ms half-frame burst
ssburst.SSBPeriodicity = 20; % SS burst set periodicity in ms (5, 10, 20, 40, 80, 160)
ssburst.FrequencySSB = 0*5000; % Frequency offset of SS burst (Hz), relative to waveform center (multiples of 5kHz)
ssburst.Power = 0; % Power scaling in dB

Bandwidth Parts

A BWP is formed by a set of contiguous resources sharing a numerology on a given carrier. This
example supports the use of multiple BWPs using a structure array. Each entry in the array
represents a BWP. For each BWP you can specify the subcarrier spacing (SCS), the cyclic prefix (CP)
length and the bandwidth. The SubcarrierSpacing parameter maps the BWP to one of the SCS
specific carriers defined earlier. The RBOffset parameter controls the location of the BWP in the
carrier. This is expressed in terms of the BWP numerology. Different BWPs can overlap with each
other.

% Bandwidth parts configurations
bwp = [];

bwp(1).SubcarrierSpacing = 15; % BWP Subcarrier Spacing
bwp(1).CyclicPrefix = 'Normal'; % BWP Cyclic prefix for 15 kHz
bwp(1).NRB = 25; % Size of BWP
bwp(1).RBOffset = 12; % Position of BWP in SCS carrier

bwp(2).SubcarrierSpacing = 30; % BWP Subcarrier Spacing
bwp(2).CyclicPrefix = 'Normal'; % BWP Cyclic prefix for 30 kHz
bwp(2).NRB = 50; % Size of BWP
bwp(2).RBOffset = 50; % Position of BWP in SCS carrier

CORESET and Search Space Configuration

The parameters in this section specify the control resource set (CORESET) and the PDCCH search
space configuration. The CORESET specifies the possible locations (in time and frequency) of the
control channel for a given numerology. This example supports multiple CORESETs. The following
parameters can be specified:

 5G NR Downlink Carrier Waveform Generation

3-3

• Allocated OFDM symbols which specify the first symbol of each CORESET monitoring opportunity
in a slot

• The allocated slots within a period
• Periodicity of the allocation. If this is set to empty it indicates no repetition
• CORESET duration in symbols, either 1, 2 or 3
• The allocated physical resource block (PRB) indices of the CORESET. Note that the CORESET

frequency allocation is defined in blocks of 6 PRBs, aligned in common resource block (CRB)
numbering, i.e. relative to point A. Each allocated PRB index input selects all 6 PRBs in the CRB
aligned block that contains it.

• CCE-to-REG mapping which can be 'interleaved' or 'noninterleaved'
• Resource-element group (REG) bundle size (L), either (2,6) or (3,6), based on CORESET duration
• Interleaver size, either 2, 3, or 6
• Shift index, a scalar value in range 0...274

The figure below shows the meaning of some of the CORESET parameters.

% CORESET/search space configurations
coreset = [];
coreset(1).AllocatedSymbols = [0,7]; % First symbol of each CORESET monitoring opportunity in a slot
coreset(1).AllocatedSlots = [0,1]; % Allocated slots within a period
coreset(1).AllocatedPeriod = 5; % Allocated slot period (empty implies no repetition)
coreset(1).Duration = 3; % CORESET symbol duration (1,2,3)
coreset(1).AllocatedPRB = 6*[0,1,3]; % 6 RB sized indices, relative to BWP (RRC - frequencyDomainResources)
coreset(1).CCEREGMapping = 'noninterleaved'; % Mapping: 'interleaved' or 'noninterleaved'
coreset(1).REGBundleSize = 3; % L (2,6) or (3,6)
coreset(1).InterleaverSize = 2; % R (2,3,6)
coreset(1).ShiftIndex = waveconfig.NCellID; % default to NCellID, else 0...274

PDCCH Instances Configuration

This section specifies the parameters for the set of PDCCH instances in the waveform. Each element
in the structure array defines a PDCCH sequence instance. The following parameters can be set:

3 Tutorials

3-4

• Enable/disable the PDCCH sequence
• Specify the BWP carrying the PDCCH
• PDCCH instance power in dB
• Enable/disable DCI channel coding
• Allocated search spaces within the CORESET monitoring occasion sequence
• CORESET which carries the PDCCH instance
• Periodicity of the allocation. If this is set to empty it indicates no repetition
• Number of control channel elements (CCEs) in this PDCCH
• NumCCE and StartCCE specify the elements used for the transmission of this PDCCH
• RNTI
• Scrambling NID for this PDCCH and its associated DM-RS
• DM-RS power boosting
• DCI message payload size
• DCI message data source. You can use one of the following standard PN sequences: 'PN9-ITU',

'PN9', 'PN11', 'PN15', 'PN23'. The seed for the generator can be specified using a cell array in the
form {'PN9',seed}. If no seed is specified, the generator is initialized with all ones

pdcch = [];
pdcch(1).Enable = 1; % Enable PDCCH sequence
pdcch(1).BWP = 1; % Bandwidth part
pdcch(1).Power = 1.1; % Power scaling in dB
pdcch(1).EnableCoding = 1; % Enable DCI coding
pdcch(1).CORESET = 1; % Control resource set ID which carries this PDCCH
pdcch(1).AllocatedSearchSpaces = [0,3]; % Index of allocated search spaces in the CORESET monitoring sequence
pdcch(1).AllocatedPeriod = 4; % Allocation slot period (empty implies no repetition)
pdcch(1).NumCCE = 8; % Number of CCE used by PDCCH
pdcch(1).StartCCE = 0; % Starting CCE of PDCCH
pdcch(1).RNTI = 0; % RNTI
pdcch(1).NID = 1; % PDCCH and DM-RS scrambling NID
pdcch(1).PowerDMRS = 0; % Additional power boosting in dB
pdcch(1).DataBlkSize = 20; % DCI payload size
pdcch(1).DataSource = 'PN9'; % DCI data source

PDSCH Instances Configuration

This section specifies the set of PDSCH instances in the waveform. Each element in the structure
array defines a PDSCH sequence instance. This example defines two PDSCH sequence instances.

General Parameters

Set these parameters for each PDSCH sequence instance:

• Enable or disable this PDSCH sequence
• Specify the BWP carrying the PDSCH. The PDSCH will use the SCS specified for this BWP
• Power scaling in dB
• Enable or disable DL-SCH transport channel coding
• Transport block data source. You can use one of the following standard PN sequences: 'PN9-ITU',

'PN9', 'PN11', 'PN15', 'PN23'. The seed for the generator can be specified using a cell array in the
form {'PN9', seed}. If no seed is specified, the generator is initialized with all ones

 5G NR Downlink Carrier Waveform Generation

3-5

• Target code rate used to calculate the transport block sizes
• Overhead parameter
• Symbol modulation
• Number of layers
• Redundancy version (RV) sequence
• Enable or disable the interleaving of the virtual to physical resource block mapping. If this

parameter is not specified, the direct, non-interleaved mapping is considered
• Bundle size for the interleaved map, specified by the higher layer parameter vrb-ToPRB-

Interleaver. If this parameter is not specified, the bundle size is set to 2

pdsch = [];
pdsch(1).Enable = 1; % Enable PDSCH sequence
pdsch(1).BWP = 1; % Bandwidth part
pdsch(1).Power = 0; % Power scaling in dB
pdsch(1).EnableCoding = 1; % Enable DL-SCH transport channel coding
pdsch(1).DataSource = 'PN9'; % Channel data source
pdsch(1).TargetCodeRate = 0.4785; % Code rate used to calculate transport block sizes
pdsch(1).Xoh_PDSCH = 0; % Rate matching overhead
pdsch(1).Modulation = 'QPSK'; % 'QPSK', '16QAM', '64QAM', '256QAM'
pdsch(1).NLayers = 2; % Number of PDSCH layers
pdsch(1).RVSequence = [0,2,3,1]; % RV sequence to be applied cyclically across the PDSCH allocation sequence
pdsch(1).VRBToPRBInterleaving = 0; % Disable interleaved resource mapping
pdsch(1).VRBBundleSize = 2; % vrb-ToPRB-Interleaver parameter

Allocation

The following diagram represents some of the parameters used in the PDSCH allocation.

3 Tutorials

3-6

You can set the following parameters to control the PDSCH allocation. Note that these parameters
are relative to the BWP. The specified PDSCH allocation will avoid the locations used for the SS burst.

• Symbols in a slot allocated to each PDSCH instance
• Slots in a frame used for the sequence of PDSCH
• Period of the allocation in slots. If this is empty it indicates no repetition
• The allocated PRBs are relative to the BWP
• RNTI. This value is used to link the PDSCH to an instance of the PDCCH
• NID for scrambling the PDSCH bits

pdsch(1).AllocatedSymbols = 2:10; % Range of symbols in a slot
pdsch(1).AllocatedSlots = [0:9]; % Allocated slot indices for PDSCH sequence
pdsch(1).AllocatedPeriod = 15; % Allocation period in slots (empty implies no repetition)
pdsch(1).AllocatedPRB = [0:5, 10:20]; % PRB allocation
pdsch(1).RNTI = 0; % RNTI
pdsch(1).NID = 1; % Scrambling for data part

Note that the generator in this example does not check for inter-channel conflict. However, additional
parameters can be specified for rate matching around other resources, if required

• The PDSCH can be rate matched around one or more CORESETs
• The PDSCH can be rate matched around other resource allocations

pdsch(1).RateMatch(1).CORESET = [1]; % Rate matching pattern, defined by CORESET IDs
pdsch(1).RateMatch(1).Pattern.AllocatedPRB = []; % Rate matching pattern, defined by set of 'bitmaps'
pdsch(1).RateMatch(1).Pattern.AllocatedSymbols = [];
pdsch(1).RateMatch(1).Pattern.AllocatedSlots = [];
pdsch(1).RateMatch(1).Pattern.AllocatedPeriod = [];

PDSCH DM-RS Configuration

Set the DM-RS parameters

% Antenna port and DM-RS configuration (TS 38.211 section 7.4.1.1)
pdsch(1).PortSet = 0:pdsch(1).NLayers-1; % DM-RS antenna ports used
pdsch(1).PDSCHMappingType = 'A'; % PDSCH mapping type ('A'(slot-wise),'B'(non slot-wise))
pdsch(1).DMRSTypeAPosition = 2; % Mapping type A only. First DM-RS symbol position (2,3)
pdsch(1).DMRSLength = 1; % Number of front-loaded DM-RS symbols (1(single symbol),2(double symbol))
pdsch(1).DMRSAdditionalPosition = 0; % Additional DM-RS symbol positions (max range 0...3)
pdsch(1).DMRSConfigurationType = 2; % DM-RS configuration type (1,2)
pdsch(1).NumCDMGroupsWithoutData = 0; % CDM groups without data (max range 0...3)
pdsch(1).NIDNSCID = 1; % Scrambling identity (0...65535)
pdsch(1).NSCID = 0; % Scrambling initialization (0,1)
pdsch(1).PowerDMRS = 0; % Additional power boosting in dB

PDSCH PT-RS Configuration

Set the PT-RS parameters

% PT-RS configuration (TS 38.211 section 7.4.1.2)
pdsch(1).EnablePTRS = 0; % Enable or disable the PT-RS (1 or 0)
pdsch(1).PTRSTimeDensity = 1; % Time density (L_PT-RS) of PT-RS (1,2,4)
pdsch(1).PTRSFrequencyDensity = 2; % Frequency density (K_PT-RS) of PT-RS (2,4)
pdsch(1).PTRSREOffset = '00'; % PT-RS resource element offset ('00','01','10','11')
pdsch(1).PTRSPortSet = 0; % PT-RS antenna ports must be a subset of DM-RS ports

 5G NR Downlink Carrier Waveform Generation

3-7

pdsch(1).PowerPTRS = 0; % Additional PT-RS power boosting in dB

% When PT-RS is enabled, the DM-RS ports must be in range 0 to 3 for DM-RS
% configuration type 1 and in range 0 to 5 for DM-RS configuration type 2.
% Nominally the antenna port of PT-RS is the lowest DM-RS port number.

Specifying Multiple PDSCH Instances

A second PDSCH sequence instance is specified next using the second BWP.

pdsch(2) = pdsch(1);
pdsch(2).Enable = 1;
pdsch(2).BWP = 2; % PDSCH mapped to 2nd BWP
pdsch(2).AllocatedSymbols = 0:11;
pdsch(2).AllocatedSlots = [2:4,6:20];
pdsch(2).AllocatedPRB = [25:30, 35:38]; % PRB allocation, relative to BWP

CSI-RS

This section configures channel state information reference signals (CSI-RS) in the waveform. Each
element in the structure array represents a set of CSI-RS resources associated with a BWP.

General Parameters

Set these parameters for a set of CSI-RS resources:

• Enable or disable this set of CSI-RS resources
• Specify the BWP carrying this set of CSI-RS resources. The CSI-RS resource(s) configuration will

use the SCS specified for this BWP
• Specify the power scaling in dB. Providing a scalar defines the power scaling for a single CSI-RS

resource or all configured CSI-RS resources. Providing a vector defines a separate power level for
each of the CSI-RS resources.

csirs(1).Enable = 0;
csirs(1).BWP = 1;
csirs(1).Power = 3; % in dB

CSI-RS configuration

You can configure the following parameters for one or more zero-power (ZP) or non-zero-power (NZP)
CSI-RS resource configurations.

• Type of CSI-RS resource(s) ('nzp','zp')
• Row number corresponds to CSI-RS resource(s) as defined in TS 38.211 Table 7.4.1.5.3-1 (1...18)
• Frequency density of CSI-RS resource(s) ('one','three','dot5even','dot5odd')
• Subcarrier locations of CSI-RS resource(s) within a resource block (RB)
• Number of RBs allocated to CSI-RS resource(s) (1...275)
• Starting RB index of CSI-RS resource(s) allocation relative to the carrier resource grid (0...2169)
• OFDM symbol locations of CSI-RS resource(s) within a slot
• Allocated slots (0-based) of CSI-RS resource(s) within a period. This parameter can be a vector or

a cell array of vectors. In the latter case, each cell corresponds to an individual CSI-RS resource.
In case of a vector, the same set of slots is used for all CSI-RS resources

3 Tutorials

3-8

• Periodicity of CSI-RS resource(s) allocation in slots. If this is empty it indicates no repetition. This
parameter can be a scalar or a cell array. In the latter case, each cell corresponds to an individual
CSI-RS resource. In case of a scalar, the same period is used for all CSI-RS resources

• Scrambling identity corresponds to CSI-RS resource(s) for pseudo-random sequence generation
(0...1023)

csirs(1).CSIRSType = {'nzp','zp'};
csirs(1).RowNumber = [3 5];
csirs(1).Density = {'one','one'};
csirs(1).SubcarrierLocations = {6,4};
csirs(1).NumRB = 25;
csirs(1).RBOffset = 12;
csirs(1).SymbolLocations = {13,9};
csirs(1).AllocatedSlots = {[0 2],[2 3]};
csirs(1).AllocatedPeriod = {[],5};
csirs(1).NID = 5;

Specifying Multiple CSI-RS Instances

A set of CSI-RS resources associated with the second BWP.

csirs(2).Enable = 0;
csirs(2).BWP = 2;
csirs(2).Power = 3; % in dB
csirs(2).CSIRSType = {'nzp','nzp'};
csirs(2).RowNumber = [1 1];
csirs(2).Density = {'three','three'};
csirs(2).SubcarrierLocations = {0,0};
csirs(2).NumRB = 50;
csirs(2).RBOffset = 50;
csirs(2).SymbolLocations = {6,10};
csirs(2).AllocatedSlots = {[0,1],[0,1]};
csirs(2).AllocatedPeriod = {10,10};
csirs(2).NID = 0;

Waveform Generation

This section collects all the parameters into the carrier configuration and generates the waveform.

% Collect together channel oriented parameter sets into a single
% configuration
waveconfig.SSBurst = ssburst;
waveconfig.Carriers = carriers;
waveconfig.BWP = bwp;
waveconfig.CORESET = coreset;
waveconfig.PDCCH = pdcch;
waveconfig.PDSCH = pdsch;
waveconfig.CSIRS = csirs;

% Generate complex baseband waveform
[waveform,bwpset] = hNRDownlinkWaveformGenerator(waveconfig);

 5G NR Downlink Carrier Waveform Generation

3-9

3 Tutorials

3-10

 5G NR Downlink Carrier Waveform Generation

3-11

The waveform generator also plots the resource grids for the bandwidth parts (this is controlled by
the field DisplayGrids in the carrier configuration). The following plots are generated:

• The SCS specific carrier resource grids, along with the minimum guardbands, aligned relative to
the overall channel bandwidth.

• Resource grids showing the location of the components (PDCCH, PDSCH, and CORESET) in each
BWP. This does not plot the power of the signals, just their location in the grid.

• Generated waveform in the frequency domain for each BWP. This includes the PDCCH and PDSCH
instances.

Note that none of these resource grids include the SS burst which is independent of the BWPs.

The waveform generator function returns the time domain waveform and a structure array bwpset,
which contains the following fields:

• The resource grid corresponding to this BWP
• The resource grid of the overall bandwidth containing the channels and signals in this BWP
• An info structure with information corresponding to the BWP. The contents of this info structure

for the first BWP are shown below.

disp('Information associated to BWP 1:')
disp(bwpset(1).Info)

Information associated to BWP 1:
 SamplingRate: 61440000

3 Tutorials

3-12

 Nfft: 4096
 Windowing: 10
 CyclicPrefixLengths: [1x14 double]
 SymbolLengths: [1x14 double]
 NSubcarriers: 2592
 SubcarrierSpacing: 15
 SymbolsPerSlot: 14
 SlotsPerSubframe: 1
 SymbolsPerSubframe: 14
 SamplesPerSubframe: 61440
 SubframePeriod: 1.0000e-03
 Midpoints: [1x141 double]
 WindowOverlap: [10 10 10 10 10 10 10 10 10 10 10 10 10 10]
 k0: 0

Note that the generated resource grid is a 3D matrix where the different planes represent the
antenna ports. For the different physical channels and signals the lowest port is mapped to the first
plane of the grid.

See Also
Functions
nrPBCH | nrPBCHDMRS | nrPDCCH | nrPDSCH | nrPSS | nrSSS

More About
• “5G NR Uplink Carrier Waveform Generation” on page 3-14

 5G NR Downlink Carrier Waveform Generation

3-13

5G NR Uplink Carrier Waveform Generation
This example implements a 5G NR uplink carrier waveform generator using 5G Toolbox™.

Introduction

This example shows how to parameterize and generate a 5G New Radio (NR) uplink waveform. The
following channels and signals can be generated:

• PUSCH and its associated DM-RS and PT-RS
• PUCCH and its associated DM-RS
• SRS

This example supports the parameterization and generation of multiple bandwidth parts (BWP).
Multiple instances of PUSCH, PUCCH and SRS can be generated over the different BWPs. The
example allows to configure PUCCH, PUSCH and SRS for a specific UE categorized by RNTI and
transmits only PUSCH for that specific RNTI when both PUCCH and PUSCH overlap in a slot.

Waveform and Carrier Configuration

This section sets the subcarrier spacing (SCS) specific carrier bandwidths in resource blocks, the
physical layer cell identity NCellID, and the length of the generated waveform in subframes. You can
visualize the generated resource grids by setting the DisplayGrids field to 1. The channel
bandwidth and frequency range parameters are used to display the associated minimum guardbands
on a schematic diagram of the SCS carrier alignment. The schematic diagram is displayed in one of
the output plots of the example.

waveconfig = [];
waveconfig.NCellID = 0; % Cell identity
waveconfig.ChannelBandwidth = 50; % Channel bandwidth (MHz)
waveconfig.FrequencyRange = 'FR1'; % 'FR1' or 'FR2'
waveconfig.NumSubframes = 10; % Number of 1ms subframes in generated waveform
 % (1,2,4,8 slots per 1ms subframe, depending on SCS)
waveconfig.DisplayGrids = 1; % Display the resource grids after signal generation

% Define a set of SCS specific carriers, using the maximum sizes for a 50
% MHz NR channel. See TS 38.101-1 for more information on defined
% bandwidths
carriers = [];
carriers(1).SubcarrierSpacing = 15;
carriers(1).NRB = 270;
carriers(1).RBStart = 0;

carriers(2).SubcarrierSpacing = 30;
carriers(2).NRB = 133;
carriers(2).RBStart = 1;

Bandwidth Parts

A BWP is formed by a set of contiguous resources sharing a numerology on a given SCS specific
carrier. This example supports the use of multiple BWPs using a struct array. Each entry in the array
represents a BWP. For each BWP you can specify the subcarrier spacing (SCS), the cyclic prefix (CP)
length and the bandwidth. The SubcarrierSpacing parameter maps the BWP to one of the SCS
specific carriers defined earlier. The RBOffset parameter controls the location of the BWP in the

3 Tutorials

3-14

carrier. This is expressed in terms of the BWP numerology. Different BWPs can overlap with each
other.

% Bandwidth parts configurations
bwp = [];

bwp(1).SubcarrierSpacing = 15; % BWP1 Subcarrier Spacing
bwp(1).CyclicPrefix = 'Normal'; % BWP1 cyclic prefix
bwp(1).NRB = 25; % Size of BWP1
bwp(1).RBOffset = 10; % Position of BWP1 in carrier

bwp(2).SubcarrierSpacing = 30; % BWP2 Subcarrier Spacing
bwp(2).CyclicPrefix = 'Normal'; % BWP2 cyclic prefix
bwp(2).NRB = 51; % Size of BWP2
bwp(2).RBOffset = 40; % Position of BWP2 in carrier

PUCCH Instances Configuration

This section specifies the parameters for the set of PUCCH instances in the waveform. Each element
in the structure array defines a PUCCH sequence instance. The following parameters can be set:

• Enable/disable the PUCCH sequence
• Specify the BWP carrying the PUCCH
• PUCCH instance power in dB
• Slots within a period used for PUCCH
• Periodicity of the allocation. Use empty to indicate no repetition
• DM-RS power boosting in dB

pucch = [];
pucch(1).Enable = 1; % Enable PUCCH sequence
pucch(1).BWP = 1; % Bandwidth part
pucch(1).Power = 0; % Power scaling in dB
pucch(1).AllocatedSlots = [3 4]; % Allocated slots within a period
pucch(1).AllocatedPeriod = 6; % Allocation slot period (empty implies no repetition)
pucch(1).PowerDMRS = 1; % Additional power boosting in dB

PUCCH Resource Configuration

 5G NR Uplink Carrier Waveform Generation

3-15

This section specifies the PUCCH sequence resource related parameters. The parameters can be
categorized into the following sections:

• Enable/Disable the PUCCH dedicated resource. If this is disabled, it uses common resource as per
TS 38.213 Section 9.2.1

• Provide the resource index value (0...15), when dedicated resource is disabled and the cyclic
prefix of BWP transmitting PUCCH is normal. In this case, the resource and format parameters for
the PUCCH transmission are filled up directly based on the resource index. All the other
parameters that are provided for resource and format configurations are not considered.

When the dedicated resource is enabled or when the dedicated resource is disabled with the cyclic
prefix of BWP transmitting PUCCH is extended, the following resource parameters need to be
provided:

• Specify the index of first PRB prior to frequency hopping or for no frequency hopping within the
BWP

• Specify the index of first PRB after frequency hopping within the BWP
• Intra-slot frequency hopping configuration ('enabled','disabled')
• Group hopping configuration ('neither','enable','disable')

and the following format specific parameters need to be provided:

• PUCCH format configuration in the resource (0...4)
• Starting symbol index allocated for PUCCH transmission
• Number of OFDM symbols allocated for PUCCH transmission. For PUCCH formats 1, 3 and 4, the

number of OFDM symbols allocated are in range 4 to 14, and for formats 0 and 2, it is either 1 or
2

• Initial cyclic shift for formats 0 and 1. The value is in range 0 to 11
• Modulation scheme for formats 3 and 4 ('QPSK','pi/2-BPSK')
• Number of resource blocks allocated for format 2 and 3. The nominal value is one of the set

{1,2,3,4,5,6,8,9,10,12,15,16}
• Spreading factor for format 4. The value is either 2 or 4
• Orthogonal cover code index for formats 1 and 4. For format 1, the value is in range 0 to 6. For

format 4, the value is less than spreading factor and greater than or equal to 0
• Indicate the presence of additional DM-RS for formats 3 and 4. The value is either 0 or 1

Scrambling identities to be used for different formats

• RNTI for formats 2/3/4. It is used for sequence generation. It is in range 0 to 65535
• Scrambling identity (NID) for PUCCH formats 2/3/4. It is in range 0 to 1023. Use empty ([]) to use

physical layer cell identity. It is used in sequence generation. This parameter is provided by
higher-layer parameter dataScramblingIdentityPUSCH

• PUCCH hopping identity for formats 0/1/3/4. Use empty ([]) to use physical layer cell identity. The
value is used in sequence generation for format 0, both sequence and DM-RS generation for
format 1 and only for DM-RS generation for formats 3 and 4

• DM-RS scrambling NID for PUCCH format 2. It is in range 0 to 65535. Use empty ([]) to use
physical layer cell identity

3 Tutorials

3-16

Irrespective of dedicated resource configuration, the following parameters are to be provided for slot
repetitions:

• Specify the number of slot repetitions for formats 1,3,4 (2 or 4 or 8). For no slot repetition, the
value can be specified as 1

• Specify the inter-slot frequency hopping for formats 1,3,4 ('enabled','disabled'). If this is enabled
and the number of slot repetitions is more than one, then intra-slot frequency hopping is disabled

• Specify the maximum code rate. The nominal value is one of the set {0.08, 0.15, 0.25, 0.35, 0.45,
0.6, 0.8}

% Dedicated resource parameters
pucch(1).DedicatedResource = 1; % Enable/disable the dedicated resource configuration (1/0)
% Provide the resource index value when dedicated resource is disabled. The
% PUCCH resource is configured based on the resource index value, as per
% the table 9.2.1-1 of Section 9.2.1, TS 38.213.
pucch(1).ResourceIndex = 0; % Resource index for PUCCH dedicated resource (0...15)

% When dedicated resource is enabled or when the dedicated resource is
% disabled with the cyclic prefix of BWP transmitting PUCCH is extended,
% the resource index value is ignored and the parameters specified below
% for the resource and format configurations are considered.

% Resource parameters
pucch(1).StartPRB = 0; % Index of first PRB prior to frequency hopping or for no frequency hopping
pucch(1).SecondHopPRB = 1; % Index of first PRB after frequency hopping
pucch(1).IntraSlotFreqHopping = 'enabled'; % Indication for intra-slot frequency hopping ('enabled','disabled')
pucch(1).GroupHopping = 'enable'; % Group hopping configuration ('enable','disable','neither')

% Format specific parameters
pucch(1).PUCCHFormat = 3; % PUCCH format 0/1/2/3/4
pucch(1).StartSymbol = 3; % Starting symbol index
pucch(1).NrOfSymbols = 11; % Number of OFDM symbols allocated for PUCCH
pucch(1).InitialCS = 3; % Initial cyclic shift for format 0 and 1
pucch(1).OCCI = 0; % Orthogonal cover code index for format 1 and 4
pucch(1).Modulation = 'QPSK'; % Modulation for format 3/4 ('pi/2-BPSK','QPSK')
pucch(1).NrOfRB = 9; % Number of resource blocks for format 2/3
pucch(1).SpreadingFactor = 4; % Spreading factor for format 4, value is either 2 or 4
pucch(1).AdditionalDMRS = 1; % Additional DM-RS (0/1) for format 3/4

% Scrambling identities of PUCCH and PUCCH DM-RS
pucch(1).RNTI = 0; % RNTI (0...65535) for formats 2/3/4
pucch(1).NID = 1; % PUCCH scrambling identity (0...1023) for formats 2/3/4
pucch(1).HoppingId = 1; % PUCCH hopping identity (0...1023) for formats 0/1/3/4
pucch(1).NIDDMRS = 1; % DM-RS scrambling identity (0...65535) for PUCCH format 2

% Multi-slot configuration parameters
pucch(1).NrOfSlots = 1; % Number of slots for PUCCH repetition (1/2/4/8). One for no repetition
pucch(1).InterSlotFreqHopping = 'disabled'; % Indication for inter-slot frequency hopping ('enabled','disabled'), used in PUCCH repetition

% Code rate - This parameter is used when there is multiplexing of UCI part
% 1 (HARQ-ACK, SR, CSI part 1) and UCI part 2 (CSI part 2) to get the rate
% matching lengths of each UCI part
pucch(1).MaxCodeRate = 0.15; % Maximum code rate (0.08, 0.15, 0.25, 0.35, 0.45, 0.6, 0.8)

UCI payload configuration

Configure the UCI payload based on the format configuration

 5G NR Uplink Carrier Waveform Generation

3-17

• Enable or disable the UCI coding for formats 2/3/4
• Number of HARQ-ACK bits. For formats 0 and 1, value can be at most 2. Set the value to 0, for no

HARQ-ACK transmission
• Number of SR bits. For formats 0 and 1, value can be at most 1. Set the value to 0, for no SR

transmission
• Number of CSI part 1 bits for formats 2/3/4. Set value to 0, for no CSI part 1 transmission
• Number of CSI part 2 bits for formats 3/4. Set value to 0, for no CSI part 2 transmission. The value

is ignored when there are no CSI part 1 bits

Note that the generator in the example transmits UCI information on PUSCH whenever there is a
overlap between PUCCH and PUSCH for a specific RNTI in a BWP. The parameters to be configured
for UCI transmission on PUSCH are provided in the section UCI on PUSCH. It requires the lengths of
UCI and UL-SCH to be transmitted on PUSCH.

pucch(1).EnableCoding = 1; % Enable UCI coding
pucch(1).LenACK = 5; % Number of HARQ-ACK bits
pucch(1).LenSR = 5; % Number of SR bits
pucch(1).LenCSI1 = 10; % Number of CSI part 1 bits (for formats 2/3/4)
pucch(1).LenCSI2 = 10; % Number of CSI part 2 bits (for formats 3/4)

pucch(1).DataSource = 'PN9'; % UCI data source

% UCI message data source. You can use one of the following standard PN
% sequences: 'PN9-ITU', 'PN9', 'PN11', 'PN15', 'PN23'. The seed for the
% generator can be specified using a cell array in the form |{'PN9',seed}|.
% If no seed is specified, the generator is initialized with all ones

Specifying Multiple PUCCH Instances

A second PUCCH sequence instance is specified next using the second BWP.

% PUCCH sequence instance specific to second BWP
pucch(2) = pucch(1);
pucch(2).BWP = 2;
pucch(2).StartSymbol = 10;
pucch(2).NrOfSymbols = 2;
pucch(2).PUCCHFormat = 2;
pucch(2).AllocatedSlots = 0:2;
pucch(2).AllocatedPeriod = [];
pucch(2).RNTI = 10;

PUSCH Instances Configuration

This section specifies the set of PUSCH instances in the waveform using a struct array. This example
defines two PUSCH sequence instances.

General Parameters

The following parameters are set for each instance:

• Enable/disable this PUSCH sequence
• Specify the BWP this PUSCH maps to. The PUSCH will use the SCS specified for this BWP
• Power scaling in dB

3 Tutorials

3-18

• Enable/disable the UL-SCH transport coding
• Scrambling identity (NID) for PUSCH bits. It is in range 0 to 1023. Use empty ([]) to use physical

layer cell identity
• RNTI
• Transform precoding (0,1). The value of 1, enables the transform precoding and the resultant

waveform is DFT-s-OFDM. When the value is 0, the resultant waveform is CP-OFDM
• Target code rate used to calculate the transport block sizes.
• Overhead parameter. It is used to calculate the length of transport block size. It is one of the set

{0, 6, 12, 18}
• Transmission scheme ('codebook','nonCodebook'). When the transmission scheme is 'codebook',

the MIMO precoding is enabled and a precoding matrix is selected based on the number of layers,
number of antenna ports and the transmitted precoding matrix indicator. When the transmission is
set to 'nonCodebook', an identity matrix is used, leading to no MIMO precoding

• Modulation scheme ('pi/2-BPSK', 'QPSK', '16QAM', '64QAM', '256QAM'). Nominally, the
modulation scheme 'pi/2-BPSK' is used when transform precoding is enabled

• Number of layers (1...4). The number of layers is restricted to a maximum of 4 in uplink as there is
only one code word transmission. Nominally, the number of layers is set to 1 when transform
precoding is enabled. This value is ignored, when PortSet field is specified

• Number of antenna ports (1,2,4). It is used when codebook transmission is enabled. The number
of antenna ports must be greater than or equal to number of DM-RS ports configured

• Transmitted precoding matrix indicator (0...27). It depends on the number of layers and the
number of antenna ports

• Redundancy version (RV) sequence
• Intra-slot frequency hopping ('enabled','disabled')
• Resource block offset for second hop. It is used when frequency (Intra-slot/Inter-slot) hopping is

enabled
• Inter-slot frequency hopping ('enabled','disabled'). If this is enabled, intra-slot frequency hopping

is disabled, the starting position of resource block in the allocated PRB of PUSCH in the
bandwidth part depends on the whether the slot is even-numbered or odd-numbered

• Transport block data source. You can use one of the following standard PN sequences: 'PN9-ITU',
'PN9', 'PN11', 'PN15', 'PN23'. The seed for the generator can be specified using a cell array in the
form {'PN9', seed}. If no seed is specified, the generator is initialized with all ones

pusch = [];
pusch(1).Enable = 1; % Enable PUSCH config
pusch(1).BWP = 1; % Bandwidth part
pusch(1).Power = 0; % Power scaling in dB
pusch(1).EnableCoding = 1; % Enable the UL-SCH transport coding
pusch(1).NID = 1; % Scrambling for data part (0...1023)
pusch(1).RNTI = 0; % RNTI
pusch(1).TransformPrecoding = 0; % Transform precoding flag (0 or 1)
pusch(1).TargetCodeRate = 0.47; % Code rate used to calculate transport block sizes
pusch(1).Xoh_PUSCH = 0; % Overhead. It is one of the set {0,6,12,18}

% Transmission settings
pusch(1).TxScheme = 'codebook'; % Transmission scheme ('codebook','nonCodebook')
pusch(1).Modulation = 'QPSK'; % 'pi/2-BPSK','QPSK','16QAM','64QAM','256QAM'
pusch(1).NLayers = 2; % Number of PUSCH layers (1...4)
pusch(1).NAntennaPorts = 4; % Number of antenna ports (1,2,4). It must not be less than number of layers

 5G NR Uplink Carrier Waveform Generation

3-19

pusch(1).TPMI = 0; % Transmitted precoding matrix indicator (0...27)
pusch(1).RVSequence = [0 2 3 1]; % RV sequence to be applied cyclically across the PUSCH allocation sequence
pusch(1).IntraSlotFreqHopping = 'disabled'; % Intra-slot frequency hopping ('enabled','disabled')
pusch(1).RBOffset = 10; % Resource block offset for second hop

% Multi-slot transmission
pusch(1).InterSlotFreqHopping = 'enabled'; % Inter-slot frequency hopping ('enabled','disabled')

% Data source
pusch(1).DataSource = 'PN9'; % Transport block data source

Allocation

You can set the following parameters to control the PUSCH allocation.

• PUSCH mapping type. It can be either 'A' or 'B'.
• Symbols in a slot where the PUSCH is mapped to. It needs to be a contiguous allocation. For

PUSCH mapping type 'A', the start symbol within a slot must be zero and the length can be from 4
to 14 (for normal CP) and up to 12 (for extended CP). For PUSCH mapping type 'B', the start
symbol can be from any symbol in the slot

• Slots in a frame used for the PUSCH
• Period of the allocation in slots. If this is empty it indicates no repetition
• The allocated PRBs are relative to the BWP

pusch(1).PUSCHMappingType = 'A'; % PUSCH mapping type ('A'(slot-wise),'B'(non slot-wise))
pusch(1).AllocatedSymbols = 0:13; % Range of symbols in a slot
pusch(1).AllocatedSlots = [0 1]; % Allocated slots indices
pusch(1).AllocatedPeriod = 5; % Allocation period in slots (empty implies no repetition)
pusch(1).AllocatedPRB = 0:10; % PRB allocation

DM-RS Configuration

Set the DM-RS parameters

% DM-RS configuration (TS 38.211 section 6.4.1.1)
pusch(1).DMRSConfigurationType = 1; % DM-RS configuration type (1,2)
pusch(1).NumCDMGroupsWithoutData = 2; % Number of DM-RS CDM groups without data. The value can be one of the set {1,2,3}
pusch(1).PortSet = [0 2]; % DM-RS antenna ports to use for the layers, when field is specified
pusch(1).DMRSTypeAPosition = 2; % Mapping type A only. First DM-RS symbol position (2,3)
pusch(1).DMRSLength = 1; % Number of front-loaded DM-RS symbols (1(single symbol),2(double symbol))
pusch(1).DMRSAdditionalPosition = 2; % Additional DM-RS symbol positions (max range 0...3)
pusch(1).NIDNSCID = 1; % Scrambling identity for CP-OFDM (0...65535). Use empty ([]) to use physical layer cell identity
pusch(1).NSCID = 0; % Scrambling initialization for CP-OFDM (0,1)
pusch(1).NRSID = 0; % Scrambling identity for DFT-s-OFDM DM-RS (0...1007). Use empty ([]) to use physical layer cell identity
pusch(1).PowerDMRS = 0; % Additional power boosting in dB
pusch(1).GroupHopping = 'enable'; % {'enable','disable','neither'}. This parameter is used only when transform precoding is enabled

The parameter GroupHopping is used in DM-RS sequence generation when transform precoding is
enabled. This can be set to

• 'enable' to indicate the presence of group hopping. It is configured by higher-layer parameter
sequenceGroupHopping

• 'disable' to indicate the presence of sequence hopping. It is configured by higher-layer parameter
sequenceHopping

3 Tutorials

3-20

• 'neither' to indicate both group hopping and sequence hopping are not present

Note: The number of DM-RS CDM groups without data depends on the configuration type. The
maximum number of DM-RS CDM groups can be 2 for DM-RS configuration type 1 and it can be 3 for
DM-RS configuration type 2.

PT-RS Configuration

Set the PT-RS parameters

% PT-RS configuration (TS 38.211 section 6.4.1.2)
pusch(1).EnablePTRS = 0; % Enable or disable the PT-RS (1 or 0)
pusch(1).PTRSTimeDensity = 1; % Time density (L_PT-RS) of PT-RS (1,2,4)
pusch(1).PTRSFrequencyDensity = 2; % Frequency density (K_PT-RS) of PT-RS for CP-OFDM (2,4)
pusch(1).PTRSNumSamples = 2; % Number of PT-RS samples (NGroupSamp) for DFT-s-OFDM (2,4)
pusch(1).PTRSNumGroups = 2; % Number of PT-RS groups (NPTRSGroup) for DFT-s-OFDM (2,4,8)
pusch(1).PTRSREOffset = '00'; % PT-RS resource element offset for CP-OFDM ('00','01','10','11')
pusch(1).PTRSPortSet = 0; % PT-RS antenna ports must be a subset of DM-RS ports for CP-OFDM
pusch(1).PTRSNID = 0; % PT-RS scrambling identity for DFT-s-OFDM (0...1007)
pusch(1).PowerPTRS = 0; % Additional PT-RS power boosting in dB for CP-OFDM

% When PT-RS is enabled for CP-OFDM, the DM-RS ports must be in range from
% 0 to 3 for DM-RS configuration type 1, and in the range from 0 to 5 for
% DM-RS configuration type 2.
% When PT-RS is enabled for DFT-s-OFDM and the number of PT-RS groups is
% set to 8, the number of PT-RS samples must be set to 4.

UCI on PUSCH

The following parameters must be set to transmit UCI on PUSCH in overlapping slots:

• Disable UL-SCH transmission on the overlapping slots of PUSCH (1/0). When set to 1, UL-SCH
transmission is disabled on PUSCH. The example considers there is UL-SCH transmission all the
time on PUSCH. A provision is provided to disable the UL-SCH transmission on the overlapping
slots of PUSCH and PUCCH

• BetaOffsetACK, BetaOffsetCSI1 and BetaOffsetCSI2 can be set from the tables 9.3-1, 9.3-2
TS 38.213 Section 9.3

• ScalingFactor is provided by higher layer parameter scaling, as per TS 38.212, Section
6.3.2.4. The possible value is one of the set {0.5, 0.65, 0.8, 1}. This is used to limit the number of
resource elements assigned to UCI on PUSCH

pusch(1).DisableULSCH = 1; % Disable UL-SCH on overlapping slots of PUSCH and PUCCH
pusch(1).BetaOffsetACK = 1; % Power factor of HARQ-ACK
pusch(1).BetaOffsetCSI1 = 2; % Power factor of CSI part 1
pusch(1).BetaOffsetCSI2 = 2; % Power factor of CSI part 2
pusch(1).ScalingFactor = 1; % Scaling factor (0.5, 0.65, 0.8, 1)

Specifying Multiple PUSCH Instances

A second PUSCH sequence instance is specified next using the second BWP.

pusch(2) = pusch(1);
pusch(2).Enable = 1;
pusch(2).BWP = 2;
pusch(2).AllocatedSymbols = 0:11;
pusch(2).AllocatedSlots = [5 6 7 8];

 5G NR Uplink Carrier Waveform Generation

3-21

pusch(2).AllocatedPRB = 5:10;
pusch(2).AllocatedPeriod = 10;
pusch(2).TransformPrecoding = 1;
pusch(2).IntraSlotFreqHopping = 'disabled';
pusch(2).GroupHopping = 'neither';
pusch(2).NLayers = 1;
pusch(2).PortSet = 1;
pusch(2).RNTI = 0;

SRS Instances Configuration

This section specifies the parameters for the set of SRS instances in the waveform. Each element in
the structure array defines an SRS sequence instance. This example defines two SRS sequence
instances that are disabled. The following parameters can be set:

• Enable/Disable this SRS sequence
• BWP carrying the SRS
• Number of SRS antenna ports (1,2,4).
• Number of OFDM symbols allocated for SRS transmission (1,2,4)
• Starting OFDM symbol of the SRS transmission within a slot. It must be (8...13) for normal CP and

(6...11) for extended CP
• Slots within a period used for SRS transmission
• Periodicity of the allocation. Use empty to indicate no repetition
• Starting position of the SRS sequence in the BWP in RBs
• Additional frequency offset from the starting position in 4-PRB blocks
• Bandwidth and frequency hopping configuration. The occupied bandwidth depends on the

parameters CSRS, BSRS, and BHop. Set BHop < BSRS to enable frequency hopping.
• Transmission comb to specify the SRS frequency density in subcarriers (2,4)
• Offset of the transmission comb in subcarriers
• Cyclic shift rotating the low-PAPR base sequence. The maximum number of cyclic shifts, 8 or 12,

depends on the transmission comb number, 2 or 4. For 4 SRS antenna ports, the subcarrier set
allocated to the SRS in the first and third antenna ports depends on the cyclic shift.

• Number of repeated SRS symbols within a slot. It disables frequency hopping in blocks of
Repetition symbols. Set Repetition = 1 for no repetition.

• Group or sequence hopping. It can be 'neither', 'groupHopping' or 'sequenceHopping'
• Scrambling identity. It initializes the pseudo-random binary sequence when group or sequence

hopping are enabled.

srs = struct();
srs(1).Enable = 0; % Enable SRS config
srs(1).BWP = 1; % BWP Index
srs(1).NumSRSPorts = 1; % Number of SRS ports (1,2,4)
srs(1).NumSRSSymbols = 4; % Number of SRS symbols in a slot (1,2,4)
srs(1).SymbolStart = 10; % Time-domain position of the SRS in the slot. (8...13) for normal CP and (6...11) for extended CP
srs(1).AllocatedSlots = 2; % Allocated slots indices
srs(1).AllocatedPeriod = 5; % Allocation period in slots (empty implies no repetition)
srs(1).FreqStart = 0; % Frequency position of the SRS in BWP in RBs
srs(1).NRRC = 0; % Additional offset from FreqStart specified in blocks of 4 PRBs (0...67)
srs(1).CSRS = 13; % Bandwidth configuration C_SRS (0...63). It controls the allocated bandwidth to the SRS
srs(1).BSRS = 2; % Bandwidth configuration B_SRS (0...3). It controls the allocated bandwidth to the SRS

3 Tutorials

3-22

srs(1).BHop = 1; % Frequency hopping configuration (0...3). Set BHop < BSRS to enable frequency hopping
srs(1).KTC = 2; % Comb number (2,4). It indicates the allocation of the SRS every KTC subcarriers
srs(1).KBarTC = 0; % Subcarrier offset of the SRS sequence (0...KTC-1)
srs(1).CyclicShift = 0; % Cyclic shift number (0...NCSmax-1). NCSmax = 8 for KTC = 2 and NCSmax = 12 for KTC = 4.
srs(1).Repetition = 1; % Repetition factor (1,2,4). It indicates the number of equal consecutive SRS symbols in a slot
srs(1).GroupSeqHopping = 'neither'; % Group or sequence hopping ('neither', 'groupHopping', 'sequenceHopping')
srs(1).NSRSID = 0; % Scrambling identity (0...1023)

Specifying Multiple SRS Instances

A second SRS sequence instance is specified next using the second BWP.

srs(2) = srs(1);
srs(2).Enable = 0;
srs(2).BWP = 2;
srs(2).NumSRSSymbols = 2;
srs(2).SymbolStart = 12;
srs(2).AllocatedSlots = [5 6 7 8];
srs(2).AllocatedPeriod = 10;
srs(2).BSRS = 0;
srs(2).BHop = 0;

Waveform Generation

This section collects all the parameters into the carrier configuration and generates the waveform.

% Collect together channel oriented parameter sets into a single
% configuration
waveconfig.Carriers = carriers;
waveconfig.BWP = bwp;
waveconfig.PUCCH = pucch;
waveconfig.PUSCH = pusch;
waveconfig.SRS = srs;

% Generate complex baseband waveform
[waveform,bwpset] = hNRUplinkWaveformGenerator(waveconfig);

 5G NR Uplink Carrier Waveform Generation

3-23

3 Tutorials

3-24

 5G NR Uplink Carrier Waveform Generation

3-25

The waveform generator also plots the SCS carrier alignment and the resource grids for the
bandwidth parts (this is controlled by the field DisplayGrids in the carrier configuration). The
following plots are generated:

• Resource grid showing the location of the components (PUCCH, PUSCH and SRS) in each BWP.
This does not plot the power of the signals, just their location in the grid

• Schematic diagram of SCS carrier alignment with the associated guardbands
• Generated waveform in the frequency domain for each BWP. This includes the PUCCH, PUSCH

and SRS instances

The waveform generator function returns the time domain waveform and a struct array bwpset,
which contains the following fields:

• The resource grid corresponding to this BWP
• The resource grid of the overall bandwidth containing the channels and signals in this BWP
• An info structure with information corresponding to the BWP. The contents of this info structure

for the first BWP are shown below:

disp('Information associated to BWP 1:')
disp(bwpset(1).Info)

Information associated to BWP 1:
 SamplingRate: 61440000
 Nfft: 4096
 Windowing: 10

3 Tutorials

3-26

 CyclicPrefixLengths: [1x14 double]
 SymbolLengths: [1x14 double]
 NSubcarriers: 3240
 SubcarrierSpacing: 15
 SymbolsPerSlot: 14
 SlotsPerSubframe: 1
 SymbolsPerSubframe: 14
 SamplesPerSubframe: 61440
 SubframePeriod: 1.0000e-03
 Midpoints: [1x141 double]
 WindowOverlap: [10 10 10 10 10 10 10 10 10 10 10 10 10 10]
 k0: 0

Note that the generated resource grid is a 3D matrix where the different planes represent the
antenna ports. For the different physical channels and signals the lowest port is mapped to the first
plane of the grid.

See Also
Functions
nrPUCCH0 | nrPUCCH1 | nrPUCCH2 | nrPUCCH3 | nrPUCCH4 | nrPUSCH | nrULSCH

More About
• “5G NR Downlink Carrier Waveform Generation” on page 3-2

 5G NR Uplink Carrier Waveform Generation

3-27

Synchronization Signal Blocks and Bursts
This example shows how to generate a synchronization signal block (SSB) and generate multiple
SSBs to form a synchronization signal burst (SS burst). The channels and signals that form a
synchronization signal block (primary and secondary synchronization signals, physical broadcast
channel) are created and mapped into a matrix representing the block. Finally a matrix representing
a synchronization signal burst is created, and each synchronization signal block in the burst is
created and mapped into the matrix.

SS/PBCH block

TS 38.211 Section 7.4.3.1 defines the Synchronization Signal / Physical Broadcast Channel (SS/
PBCH) block as 240 subcarriers and 4 OFDM symbols containing the following channels and signals:

• Primary synchronization signal (PSS)
• Secondary synchronization signal (SSS)
• Physical broadcast channel (PBCH)
• PBCH demodulation reference signal (PBCH DM-RS)

In other documents, for example TS 38.331, the SS/PBCH is termed "synchronization signal block" or
"SS block".

Create a 240-by-4 matrix representing the SS/PBCH block:

ssblock = zeros([240 4])

ssblock = 240×4

 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 ⋮

Primary Synchronization Signal (PSS)

Create the PSS for a given cell identity:

ncellid = 17;
pssSymbols = nrPSS(ncellid)

pssSymbols = 127×1

 -1
 -1
 -1
 -1
 -1
 -1

3 Tutorials

3-28

 1
 1
 1
 -1
 ⋮

The variable pssSymbols is a column vector containing the 127 BPSK symbols of the PSS.

Create the PSS indices:

pssIndices = nrPSSIndices;

The variable pssIndices is a column vector of the same size as pssSymbols. The value in each
element of pssIndices is the linear index of the location in the SS/PBCH block to which the
corresponding symbols in pssSymbols should be mapped. Therefore the mapping of the PSS symbols
to the SS/PBCH block can be performed with a simple MATLAB assignment, using linear indexing to
select the correct elements of the SS/PBCH block matrix. Note that a scaling factor of 1 is applied to
the PSS symbols, to represent βPSS in TS 38.211 Section 7.4.3.1.1:

ssblock(pssIndices) = 1 * pssSymbols;

Plot the SS/PBCH block matrix to show the location of the PSS:

imagesc(abs(ssblock));
caxis([0 4]);
axis xy;
xlabel('OFDM symbol');
ylabel('Subcarrier');
title('SS/PBCH block containing PSS');

 Synchronization Signal Blocks and Bursts

3-29

Secondary Synchronization Signal (SSS)

Create the SSS for the same cell identity as configured for the PSS:

sssSymbols = nrSSS(ncellid)

sssSymbols = 127×1

 -1
 1
 -1
 -1
 -1
 1
 -1
 1
 -1
 1
 ⋮

Create the SSS indices and map the SSS symbols to the SS/PBCH block, following the same pattern
used for the PSS. Note that a scaling factor of 2 is applied to the SSS symbols, to represent βSSS in TS
38.211 Section 7.4.3.1.2:

sssIndices = nrSSSIndices;
ssblock(sssIndices) = 2 * sssSymbols;

3 Tutorials

3-30

The default form of the indices is 1-based linear indices, suitable for linear indexing of MATLAB
matrices like ssblock as already shown. However, the NR standard documents describe the OFDM
resources in terms of OFDM subcarrier and symbol subscripts, using 0-based numbering. For
convenient cross-checking with the NR standard, the indices functions accept options to allow the
indexing style (linear index versus subscript) and base (0-based versus 1-based) to be selected:

sssSubscripts = nrSSSIndices('IndexStyle','subscript','IndexBase','0based')

sssSubscripts = 127x3 uint32 matrix

 56 2 0
 57 2 0
 58 2 0
 59 2 0
 60 2 0
 61 2 0
 62 2 0
 63 2 0
 64 2 0
 65 2 0
 ⋮

It can be seen from the subscripts that the SSS is located in OFDM symbol 2 (0-based) of the SS/
PBCH block, starting at subcarrier 56 (0-based).

Plot the SS/PBCH block matrix again to show the locations of the PSS and SSS:

imagesc(abs(ssblock));
caxis([0 4]);
axis xy;
xlabel('OFDM symbol');
ylabel('Subcarrier');
title('SS/PBCH block containing PSS and SSS');

 Synchronization Signal Blocks and Bursts

3-31

Physical Broadcast Channel (PBCH)

The PBCH carries a codeword of length 864 bits, created by performing BCH encoding of the master
information block (MIB). For more information on BCH coding, see the functions nrBCH and
nrBCHDecode and their use in the “NR Synchronization Procedures” example. Here a PBCH
codeword consisting of 864 random bits is used:

cw = randi([0 1],864,1);

The PBCH modulation consists of the following steps as described in TS 38.211 Section 7.3.3:

• Scrambling
• Modulation
• Mapping to physical resources

Scrambling and modulation

Multiple SS/PBCH blocks are transmitted across half a frame, as described in the cell search
procedure in TS 38.213 Section 4.1. Each SS/PBCH block is given an index from 0…L− 1, where L is
the number SS/PBCH blocks in the half frame. The scrambling sequence for the PBCH is initialized
according to the cell identity ncellid, and the subsequence used to scramble the PBCH codeword
depends on the value v, 2 or 3 LSBs of SS/PBCH block index, as described in TS 38.211 Section
7.3.3.1. In this example, v = 0 is used. The function nrPBCH creates the appropriate subsequence of
the scrambling sequence, performs scrambling and then performs QPSK modulation:

3 Tutorials

3-32

v = 0;
pbchSymbols = nrPBCH(cw,ncellid,v)

pbchSymbols = 432×1 complex

 -0.7071 + 0.7071i
 -0.7071 + 0.7071i
 -0.7071 + 0.7071i
 -0.7071 - 0.7071i
 0.7071 + 0.7071i
 -0.7071 + 0.7071i
 -0.7071 + 0.7071i
 0.7071 - 0.7071i
 0.7071 + 0.7071i
 0.7071 + 0.7071i
 ⋮

Mapping to resource elements

Create the PBCH indices and map the PBCH symbols to the SS/PBCH block. Note that a scaling
factor of 3 is applied to the PBCH symbols, to represent βPBCH in TS 38.211 Section 7.4.3.1.3:

pbchIndices = nrPBCHIndices(ncellid);
ssblock(pbchIndices) = 3 * pbchSymbols;

Plot the SS/PBCH block matrix again to show the locations of the PSS, SSS and PBCH:

imagesc(abs(ssblock));
caxis([0 4]);
axis xy;
xlabel('OFDM symbol');
ylabel('Subcarrier');
title('SS/PBCH block containing PSS, SSS and PBCH');

 Synchronization Signal Blocks and Bursts

3-33

PBCH Demodulation Reference Signal (PBCH DM-RS)

The final component of the SS/PBCH block is the DM-RS associated with the PBCH. Similar to the
PBCH, the DM-RS sequence used derives from the SS/PBCH block index and is configured using the
variable iSSB described in TS 38.211 Section 7.4.1.4.1. Here iSSB = 0 is used:

ibar_SSB = 0;
dmrsSymbols = nrPBCHDMRS(ncellid,ibar_SSB)

dmrsSymbols = 144×1 complex

 0.7071 - 0.7071i
 0.7071 + 0.7071i
 -0.7071 + 0.7071i
 -0.7071 + 0.7071i
 0.7071 - 0.7071i
 0.7071 + 0.7071i
 0.7071 - 0.7071i
 -0.7071 - 0.7071i
 -0.7071 - 0.7071i
 0.7071 + 0.7071i
 ⋮

Note that TS 38.211 Section 7.4.1.4.1 defines an intermediate variable iSSB which is defined
identically to v described previously for the PBCH.

3 Tutorials

3-34

Create the PBCH DM-RS indices and map the PBCH DM-RS symbols to the SS/PBCH block. Note that
a scaling factor of 4 is applied to the PBCH DM-RS symbols, to represent β PBCH

DM− RS in TS 38.211
Section 7.4.3.1.3:

dmrsIndices = nrPBCHDMRSIndices(ncellid);
ssblock(dmrsIndices) = 4 * dmrsSymbols;

Plot the SS/PBCH block matrix again to show the locations of the PSS, SSS, PBCH and PBCH DM-RS:

imagesc(abs(ssblock));
caxis([0 4]);
axis xy;
xlabel('OFDM symbol');
ylabel('Subcarrier');
title('SS/PBCH block containing PSS, SSS, PBCH and PBCH DM-RS');

Generating an SS burst

An SS burst, consisting of multiple SS/PBCH blocks, can be generated by creating a larger grid and
mapping SS/PBCH blocks into the appropriate locations, with each SS/PBCH block having the correct
parameters according to the location.

Create SS burst grid

In the NR standard, OFDM symbols are grouped into slots, subframes and frames. As defined in TS
38.211 Section 4.3.1, there are 10 subframes in a frame, and each subframe has a fixed duration of
1ms. Each SS burst has a duration of half a frame, and therefore spans 5 subframes:

 Synchronization Signal Blocks and Bursts

3-35

nSubframes = 5

nSubframes = 5

TS 38.211 Section 4.3.2 defines each slot as having 14 OFDM symbols (for normal cyclic prefix
length) and this is fixed:

symbolsPerSlot = 14

symbolsPerSlot = 14

However, the number of slots per subframe varies and is a function of the subcarrier spacing. As the
subcarrier spacing increases, the OFDM symbol duration decreases and therefore more OFDM
symbols can be fitted into the fixed subframe duration of 1ms.

There are 5 subcarrier spacing configurations μ = 0 . . . 4, with the corresponding subcarrier spacing
being 15 ⋅ 2μ kHz. In this example we shall use μ = 1, corresponding to 30 kHz subcarrier spacing:

mu = 1

mu = 1

The number of slots per subframe is 2μ, as doubling the subcarrier spacing halves the OFDM symbol
duration. Note that definition of a slot in NR is different from LTE: a subframe in LTE consists of 2
slots of 7 symbols (for normal cyclic prefix) whereas in NR, a subframe using the LTE subcarrier
spacing (μ = 0, 15 kHz) consists of 1 slot of 14 symbols.

Calculate the total number of OFDM symbols in an SS burst:

nSymbols = symbolsPerSlot * 2^mu * nSubframes

nSymbols = 140

Create an empty grid for the whole SS burst :

ssburst = zeros([240 nSymbols])

ssburst = 240×140

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 ⋮

Define SS block pattern

The pattern of SS/PBCH blocks within an SS burst is indirectly specified by the cell search procedure
in TS 38.213, which describes the locations in which the UE may detect an SS/PBCH block. There are
5 block patterns, Case A - Case E, which have different subcarrier spacings and are applicable for
different carrier frequencies.

3 Tutorials

3-36

Create the indices of the first symbols in the candidate SS/PBCH blocks for block pattern Case B,
which has L = 8 blocks per burst:

n = [0, 1];
firstSymbolIndex = [4; 8; 16; 20] + 28*n;
firstSymbolIndex = firstSymbolIndex(:).'

firstSymbolIndex = 1×8

 4 8 16 20 32 36 44 48

Create SS burst content

Now a loop can be created which generates each SS block and assigns it into the appropriate location
of the SS burst. Note the following:

• The code re-uses various variables created earlier in this example (PSS, SSS, and 4 sets of indices)
• The PSS and SSS are independent of the SS/PBCH block index, so can be mapped into the SS

block before the loop
• The PBCH indices and PBCH DM-RS indices are independent of the SS/PBCH block index, so do

not need updated in the loop
• iSSB, iSSB and v are set up according to the rules in TS 38.211 Sections 7.3.3.1 and 7.4.1.4.1 for

the case of L = 8.
• Each channel / signal has been scaled in order to give them different colors in the final plot

ssblock = zeros([240 4]);
ssblock(pssIndices) = pssSymbols;
ssblock(sssIndices) = 2 * sssSymbols;

for ssbIndex = 1:length(firstSymbolIndex)

 i_SSB = mod(ssbIndex,8);
 ibar_SSB = i_SSB;
 v = i_SSB;

 pbchSymbols = nrPBCH(cw,ncellid,v);
 ssblock(pbchIndices) = 3 * pbchSymbols;

 dmrsSymbols = nrPBCHDMRS(ncellid,ibar_SSB);
 ssblock(dmrsIndices) = 4 * dmrsSymbols;

 ssburst(:,firstSymbolIndex(ssbIndex) + (0:3)) = ssblock;

end

Finally, plot the SS burst content:

imagesc(abs(ssburst));
caxis([0 4]);
axis xy;
xlabel('OFDM symbol');
ylabel('Subcarrier');
title('SS burst, block pattern Case B');

 Synchronization Signal Blocks and Bursts

3-37

See Also
Functions
nrPBCH | nrPBCHDMRS | nrPBCHDMRSIndices | nrPBCHIndices | nrPSS | nrPSSIndices | nrSSS |
nrSSSIndices

More About
• “NR Synchronization Procedures”

3 Tutorials

3-38

Modeling Downlink Control Information
This example describes the downlink control information (DCI) processing for the 5G New Radio
communications system. Starting from a random DCI message, it models the message encoding
followed by the physical downlink control channel (PDCCH) processing on the transmit end.
Corresponding receiver components recover the transmitted control information elements.

System Parameters

Set parameters for a UE-specific search space.

rng(211); % Set RNG state for repeatability

nID = 23; % pdcch-DMRS-ScramblingID
rnti = 100; % C-RNTI for PDCCH in a UE-specific search space
K = 64; % Number of DCI message bits
E = 288; % Number of bits for PDCCH resources

DCI Encoding

The DCI message bits based on a downlink format are encoded using the nrDCIEncode function,
which includes the stages of CRC attachment, polar encoding and rate matching.

dciBits = randi([0 1],K,1,'int8');
dciCW = nrDCIEncode(dciBits,rnti,E);

PDCCH Symbol Generation

The encoded DCI bits (a codeword) are mapped onto the physical downlink control channel (PDCCH)
using the nrPDCCH function which generates the scrambled, QPSK-modulated symbols. The
scrambling accounts for the user-specific parameters.

sym = nrPDCCH(dciCW,nID,rnti);

For NR, the PDCCH symbols are then mapped to the resource elements of an OFDM grid which also
has PDSCH, PBCH and other reference signal elements. These are followed by OFDM modulation and
transmission over a channel. For simplicity, we directly pass the PDCCH symbols over an AWGN
channel next.

The following schematic depicts the components used in the example for DCI processing.

 Modeling Downlink Control Information

3-39

Channel

The PDCCH symbols are transmitted over an AWGN channel with a specified SNR, accounting for the
coding rate and QPSK modulation.

EbNo = 3; % in dB
bps = 2; % bits per symbol, 2 for QPSK
EsNo = EbNo + 10*log10(bps);
snrdB = EsNo + 10*log10(K/E);

rxSym = awgn(sym,snrdB,'measured');

PDCCH Decoding

The received symbols are demodulated with known user-specific parameters and channel noise
variance using the nrPDCCHDecode function. The soft output is the log-likelihood ratio for each bit in
the codeword.

noiseVar = 10.^(-snrdB/10); % assumes unit signal power
rxCW = nrPDCCHDecode(rxSym,nID,rnti,noiseVar);

DCI Decoding

An instance of the received PDCCH codeword is then decoded by the nrDCIDecode function. This
includes the stages of rate recovery, polar decoding and CRC decoding to recover the transmitted
information bits.

listLen = 8; % polar decoding list length
[decDCIBits,mask] = nrDCIDecode(rxCW,K,listLen,rnti);

isequal(mask,0)

ans = logical
 1

isequal(decDCIBits,dciBits)

ans = logical
 1

For a known recipient, the C-RNTI information aids decoding. The output mask value of 0 indicates
no errors in the transmission. For the chosen system parameters, the decoded information matches
the transmitted information bits.

See Also
Functions
nrDCIDecode | nrDCIEncode | nrPDCCH | nrPDCCHDecode

More About
• “Downlink Control Processing and Procedures”

3 Tutorials

3-40

5G New Radio Polar Coding
This example highlights the new polar channel coding technique chosen for 5G New Radio (NR)
communications system. Of the two main types of code constructions specified by 3GPP, this example
models the CRC-Aided Polar (CA-Polar) coding scheme. This example describes the main components
of the polar coding scheme with individual components for code construction, encoding and decoding
along-with rate-matching. It models a polar-coded QPSK-modulated link over AWGN and presents
Block-Error-Rate results for different message lengths and code rates for the coding scheme.

Introduction

The selection of polar codes as the channel coding technique for control channels for 5G NR
communications system has proven the merits of Arikan's [1] discovery and will establish their
application in commercial systems [6]. Based on the concept of channel polarization, this new
coding family is capacity achieving as opposed to just capacity approaching. With better or
comparable performance than LDPC and turbo codes, it supersedes the tail-biting convolutional
codes used in LTE systems for control channels. It is applied for downlink and uplink control
information (DCI/UCI) for the enhanced mobile broadband (eMBB) use case, as well as the broadcast
channel (BCH). Alternatively, the channel coding scheme for data channels for eMBB is specified to
be flexible LDPC for all block sizes.

This example highlights the components to enable a polar coding downlink simulation using QPSK
modulation over an AWGN channel. In the following sections, the individual polar coding components
are further detailed.

s = rng(100); % Seed the RNG for repeatability

Specify the code parameters used for a simulation.

% Code parameters
K = 54; % Message length in bits, including CRC, K > 30
E = 124; % Rate matched output length, E <= 8192

EbNo = 0.8; % EbNo in dB
L = 8; % List length, a power of two, [1 2 4 8]
numFrames = 10; % Number of frames to simulate
linkDir = 'DL'; % Link direction: downlink ('DL') OR uplink ('UL')

Polar Encoding

The following schematic details the transmit-end processing for the downlink, with relevant
components and their parameters highlighted.

For the downlink, the input bits are interleaved prior to polar encoding. The CRC bits appended at
the end of the information bits are thus distributed for the CA-Polar scheme. This interleaving is not
specified for the uplink.

 5G New Radio Polar Coding

3-41

The polar encoding uses an SNR-independent method where the reliability of each subchannel is
computed offline and the ordered sequence stored for a maximum code length [6]. The nested
property of polar codes allows this sequence to be used for any code rate and all code lengths smaller
than the maximum code length.

This sequence is computed for given rate-matched output length, E, and information length, K, by the
function nrPolarEncode, which implements the non-systematic encoding of the input K bits.

if strcmpi(linkDir,'DL')
 % Downlink scenario (K >= 36, including CRC bits)
 crcLen = 24; % Number of CRC bits for DL, Section 5.1, [6]
 poly = '24C'; % CRC polynomial
 nPC = 0; % Number of parity check bits, Section 5.3.1.2, [6]
 nMax = 9; % Maximum value of n, for 2^n, Section 7.3.3, [6]
 iIL = true; % Interleave input, Section 5.3.1.1, [6]
 iBIL = false; % Interleave coded bits, Section 5.4.1.3, [6]
else
 % Uplink scenario (K > 30, including CRC bits)
 crcLen = 11;
 poly = '11';
 nPC = 0;
 nMax = 10;
 iIL = false;
 iBIL = true;
end

The following schematic details the transmit-end processing for the uplink, for a payload size greater
than 19 bits and no code-block segmentation, with relevant components and their parameters
highlighted.

Rate Matching and Rate Recovery

The polar encoded set of bits (N) are rate-matched to output the specified number of bits (E) for
resource element mapping [7]. The coded bits are sub-block interleaved and passed to a circular
buffer of length N. Depending on the desired code rate and selected values of K, E, and N, either of
repetition (E >= N), and puncturing or shortening (E < N) is realized by reading the output bits from
the buffer.

• For puncturing, E bits are taken from the end
• For shortening, E bits are taken from the start
• For repetition, E bits are repeated modulo N.

For the downlink, the selected bits are passed on to the modulation mapper, while for the uplink, they
are further interleaved prior to mapping. The rate-matching processing is implemented by the
function nrRateMatchPolar.

3 Tutorials

3-42

At the receiver end, rate recovery is accomplished for each of the cases

• For puncturing, corresponding LLRs for the bits removed are set to zero
• For shortening, corresponding LLRs for the bits removed are set to a large value
• For repetition, the set of LLRs corresponding to first N bits are selected.

The rate-recovery processing is implemented by the function nrRateRecoverPolar.

R = K/E; % Effective code rate
bps = 2; % bits per symbol, 1 for BPSK, 2 for QPSK
EsNo = EbNo + 10*log10(bps);
snrdB = EsNo + 10*log10(R); % in dB
noiseVar = 1./(10.^(snrdB/10));

% Channel
chan = comm.AWGNChannel('NoiseMethod','Variance','Variance',noiseVar);

Polar Decoding

The implicit CRC encoding of the downlink (DCI or BCH) or uplink (UCI) message bits dictates the
use of the CRC-Aided Successive Cancellation List Decoding (CA-SCL) [3] as the channel decoder
algorithm. It is well known that CA-SCL decoding can outperform turbo or LDPC codes [4] and this
was one of the major factors in the adoption of polar codes by 3GPP.

Tal & Vardy [2] describe the SCL decoding algorithm in terms of likelihoods (probabilities).
However, due to underflow, the inherent computations are numerically unstable. To overcome this
issue, Stimming et.al. [5] offer the SCL decoding solely in the log-likelihood ratio (LLR) domain. The
list decoding is characterized by the L parameter, which represents the number of most likely
decoding paths retained. At the end of the decoding, the most likely code-path among the L paths is
the decoder output. As L is increased, the decoder performance also improves, however, with a
diminishing-returns effect.

For an input message which is concatenated with a CRC, CA-SCL decoding prunes out any of the
paths for which the CRC is invalid, if at least one path has the correct CRC. This additional insight in
the final path selection improves the performance further, when compared to SCL decoding. For the
downlink, a CRC of 24 bits is used, while for the uplink CRCs of 6 and 11 bits are specified, which
vary on the value of K.

The decoder is implemented by the function nrPolarDecode, which supports all three CRC lengths.
The decoder function also accounts for the input bit interleaving specified at the transmitter for the
downlink, prior to outputting the decoded bits.

% Error meter
ber = comm.ErrorRate;

Frame Processing Loop

This section shows how the prior described components for polar coding are used in a Block Error
Rate (BLER) simulation. The simulation link is highlighted in the following schematic.

 5G New Radio Polar Coding

3-43

For each frame processed, the following steps are performed:

• K-crcLen random bits are generated,
• A CRC is computed and appended to these bits
• The CRC appended bits are polar encoded to the mother code block length
• Rate-matching is performed to transmit E bits
• The E bits are QPSK modulated
• White Gaussian Noise of specified power is added
• The noisy signal is soft QPSK demodulated to output LLR values
• Rate recovery is performed accounting for either of puncturing, shortening or repetition
• The recovered LLR values are polar decoded using the CA-SCL algorithm, including

deinterleaving.
• Off the decoded K bits, the first K-crcLen bits are compared with those transmitted to update the

BLER and bit-error-rate (BER) metrics.

At the end of the simulation, the two performance indicators, BLER and BER, are reported.

numferr = 0;
for i = 1:numFrames

 % Generate a random message
 msg = randi([0 1],K-crcLen,1);

 % Attach CRC
 msgcrc = nrCRCEncode(msg,poly);

 % Polar encode
 encOut = nrPolarEncode(msgcrc,E,nMax,iIL);
 N = length(encOut);

 % Rate match
 modIn = nrRateMatchPolar(encOut,K,E,iBIL);

3 Tutorials

3-44

 % Modulate
 modOut = nrSymbolModulate(modIn,'QPSK');

 % Add White Gaussian noise
 rSig = chan(modOut);

 % Soft demodulate
 rxLLR = nrSymbolDemodulate(rSig,'QPSK',noiseVar);

 % Rate recover
 decIn = nrRateRecoverPolar(rxLLR,K,N,iBIL);

 % Polar decode
 decBits = nrPolarDecode(decIn,K,E,L,nMax,iIL,crcLen);

 % Compare msg and decoded bits
 errStats = ber(double(decBits(1:K-crcLen)), msg);
 numferr = numferr + any(decBits(1:K-crcLen)~=msg);

end

disp(['Block Error Rate: ' num2str(numferr/numFrames) ...
 ', Bit Error Rate: ' num2str(errStats(1)) ...
 ', at SNR = ' num2str(snrdB) ' dB'])

rng(s); % Restore RNG

Block Error Rate: 0, Bit Error Rate: 0, at SNR = 0.20002 dB

Results

To get meaningful results, simulations have to be run for a longer duration. Using scripts which
encapsulate the above processing into a function that supports C-code generation, the following
results for different code rates and message lengths are presented for both link directions with QPSK
modulation.

 5G New Radio Polar Coding

3-45

3 Tutorials

3-46

The above results were generated by simulating, for each SNR point, up to 1000 frame errors or a
maximum of 100e3 frames, whichever occurred first.

The BLER performance results indicate the suitability of polar codes in a communication link and
their implicit support for rate-compatibility at the bit-level granularity.

The use of C-code generation tools for the components reduces the execution time, a key concern for
simulations. The C-code generation is enabled by MATLAB Coder™.

Summary and Further Exploration

This example highlights one of the polar coding schemes (CRC-Aided Polar) specified by 3GPP for
New Radio control channel information (DCI, UCI) and broadcast channel (BCH). It shows the use of
components for all stages of the processing (encoding, rate-matching, rate-recovery and decoding)
and uses them in a link with QPSK over an AWGN channel. Highlighted performance results for
different code rates and message lengths show agreement to published trends, within parametric and
simulation assumption variations.

Explore simple parameter variations (K, E, L) and their effect on BLER performance. The polar coding
functions are implemented as open MATLAB® code to enable their application for both downlink/
uplink control information and broadcast channel. The CA-Polar scheme is applicable for both

 5G New Radio Polar Coding

3-47

• Downlink, for all message lengths, and
• Uplink, for K > 30, with crcLen = 11, nPC = 0, nMax = 10, iIL = false, and iBIL =

true.

Refer to “Modeling Downlink Control Information” on page 3-39 and “NR Synchronization
Procedures” examples, for the use of polar coding functions within the DCI and BCH functions
respectively.

The highlighted polar coding functions also support the Parity-Check polar coding construction and
encoding. This is applicable for the uplink with UCI payloads in range 18 <= K <= 25. This is
supported by the uplink control coding functions nrUCIEncode and nrUCIDecode, which include
code-block segmentation as well for appropriate values of K and E.

Selected References

1 Arikan, E., "Channel Polarization: A Method for constructing Capacity-Achieving Codes for
Symmetric Binary-Input Memoryless Channels," IEEE Transactions on Information Theory, vol.
55, No. 7, pp. 3051-3073, July 2009.

2 Tal, I, and Vardy, A., "List decoding of Polar Codes", IEEE Transactions on Information Theory,
vol. 61, No. 5, pp. 2213-2226, May 2015.

3 Niu, K., and Chen, K., "CRC-Aided Decoding of Polar Codes," IEEE Communications Letters, vol.
16, No. 10, pp. 1668-1671, Oct. 2012.

4 Niu, K., Chen, K., and Lin, J.R., "Beyond turbo codes: rate compatible punctured polar codes",
IEEE International Conference on Communications, pp. 3423-3427, 2013.

5 Stimming, A. B., Parizi, M. B., and Burg, A., "LLR-Based Successive Cancellation List Decoding of
Polar Codes", IEEE Transaction on Signal Processing, vol. 63, No. 19, pp.5165-5179, 2015.

6 3GPP TS 38.212. "NR; Multiplexing and channel coding (Release 15)." 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network.

7 R1-1711729. "WF on circular buffer of Polar Code", 3GPP TSG RAN WG1 meeting NR Ad-Hoc#2,
Ericsson, Qualcomm, MediaTek, LGE. June 2017.

See Also
Functions
nrPolarDecode | nrPolarEncode | nrRateMatchPolar | nrRateRecoverPolar

More About
• “Modeling Downlink Control Information” on page 3-39
• “NR Synchronization Procedures”

3 Tutorials

3-48

LDPC Processing for DL-SCH and UL-SCH
This example highlights the low-density parity-check (LDPC) coding chain for the 5G NR downlink
and uplink shared transport channels (DL-SCH and UL-SCH).

Shared Channel Parameters

The example uses the DL-SCH to describe the processing, which also applies to the UL-SCH.

Select parameters for a transport block transmitted on the downlink shared (DL-SCH) channel.

rng(210); % Set RNG state for repeatability

A = 10000; % Transport block length, positive integer
rate = 449/1024; % Target code rate, 0<R<1
rv = 0; % Redundancy version, 0-3
modulation = 'QPSK'; % Modulation scheme, QPSK, 16QAM, 64QAM, 256QAM
nlayers = 1; % Number of layers, 1-4 for a transport block

Based on the selected transport block length and target coding rate, DL-SCH coding parameters are
determined using the nrDLSCHInfo function.

% DL-SCH coding parameters
cbsInfo = nrDLSCHInfo(A,rate);
disp('DL-SCH coding parameters')
disp(cbsInfo)

DL-SCH coding parameters
 CRC: '24A'
 L: 24
 BGN: 1
 C: 2
 Lcb: 24
 F: 244
 Zc: 240
 K: 5280
 N: 15840

DL-SCH supports multi-codeword transmission (i.e. two transport blocks) while UL-SCH supports
only a single codeword. UL-SCH also supports pi/2-BPSK modulation in addition to those listed above
for DL-SCH.

Transport Block Processing using LDPC Coding

Data delivered from the MAC layer to the physical layer is termed as a transport block. For the
downlink shared channel (DL-SCH), a transport block goes through the processing stages of:

• CRC attachment,
• Code block segmentation and code block CRC attachment,
• Channel coding using LDPC,
• Rate matching and code block concatenation

before being passed on to the physical downlink shared channel (PDSCH) for scrambling, modulation,
layer mapping and resource/antenna mapping. Each of these stages is performed by a function as
shown next.

 LDPC Processing for DL-SCH and UL-SCH

3-49

% Random transport block data generation
in = randi([0 1],A,1,'int8');

% Transport block CRC attachment
tbIn = nrCRCEncode(in,cbsInfo.CRC);

% Code block segmentation and CRC attachment
cbsIn = nrCodeBlockSegmentLDPC(tbIn,cbsInfo.BGN);

% LDPC encoding
enc = nrLDPCEncode(cbsIn,cbsInfo.BGN);

% Rate matching and code block concatenation
outlen = ceil(A/rate);
chIn = nrRateMatchLDPC(enc,outlen,rv,modulation,nlayers);

The output number of bits from the rate matching and code block concatenation process must match
the bit capacity of the PDSCH, based on the available resources. In this example, as the PDSCH is not
modeled, this is set to achieve the target code rate based on the transport block size previously
selected.

Similar processing applies for the UL-SCH, where the physical uplink shared channel (PUSCH) is the
recipient of the UL-SCH codeword. The following schematics depict the processing for the two
channels.

Refer to nrDLSCH and nrULSCH System objects that encapsulate the processing per transport block,
with additional support for retransmissions.

3 Tutorials

3-50

Channel

A simple bipolar channel with no noise is used for this example. With the full PDSCH or PUSCH
processing, one can consider fading channels, AWGN and other RF impairments as well.

chOut = double(1-2*(chIn));

Receive Processing using LDPC Decoding

The receive end processing for the DL-SCH channel comprises of the corresponding dual operations
to the transmit end that include

• Rate recovery
• LDPC decoding
• Code block desegmentation and CRC decoding
• Transport block CRC decoding

Each of these stages is performed by a function as shown next.

% Rate recovery
raterec = nrRateRecoverLDPC(chOut,A,rate,rv,modulation,nlayers);

% LDPC decoding
decBits = nrLDPCDecode(raterec,cbsInfo.BGN,25);

% Code block desegmentation and CRC decoding
[blk,blkErr] = nrCodeBlockDesegmentLDPC(decBits,cbsInfo.BGN,A+cbsInfo.L);

disp(['CRC error per code-block: [' num2str(blkErr) ']'])

% Transport block CRC decoding
[out,tbErr] = nrCRCDecode(blk,cbsInfo.CRC);

disp(['Transport block CRC error: ' num2str(tbErr)])
disp(['Recovered transport block with no error: ' num2str(isequal(out,in))])

CRC error per code-block: [0 0]
Transport block CRC error: 0
Recovered transport block with no error: 1

As the displays indicate, there are no CRC errors at both the code-block and transport block levels.
This leads to the transport block being recovered and decoded with no errors, as expected, for a
noiseless channel.

Refer to nrDLSCHDecoder and nrULSCHDecoder System objects that encapsulate the receive
processing per codeword, with additional soft-combining of retransmissions for improved
performance.

See Also
Functions
nrCRCDecode | nrCRCEncode | nrCodeBlockDesegmentLDPC | nrCodeBlockSegmentLDPC |
nrDLSCH | nrDLSCHDecoder | nrDLSCHInfo | nrLDPCDecode | nrLDPCEncode |
nrRateMatchLDPC | nrRateRecoverLDPC | nrULSCH | nrULSCHDecoder | nrULSCHInfo

 LDPC Processing for DL-SCH and UL-SCH

3-51

More About
• “NR PDSCH Throughput”
• “NR PUSCH Throughput”

3 Tutorials

3-52

	Getting Started with 5G Toolbox Software
	About 5G
	What Is 5G New Radio?
	Scope of 5G Toolbox

	5G Toolbox and the 5G NR Protocol Layers
	Downlink Channel Mapping
	Uplink Channel Mapping

	Tutorials
	5G NR Downlink Carrier Waveform Generation
	5G NR Uplink Carrier Waveform Generation
	Synchronization Signal Blocks and Bursts
	Modeling Downlink Control Information
	5G New Radio Polar Coding
	LDPC Processing for DL-SCH and UL-SCH

